Gulf Coast Cogen Facility

PROJECT SUMMARY REPORT

HIGH VELOCITY OIL FLUSH SERVICES ABB STAL VAX STEAM TURBINE

Lubrication Based Reliability Consulting

INTRODUCTION

This report documents the High Velocity Oil Flush performed on the ABB STAL VAX Steam Turbine at Gulf Coast Cogen Facility.

OBJECTIVE:

Provide a safe and efficient Flush of these systems, satisfying all customer requirements.

RESULTS:

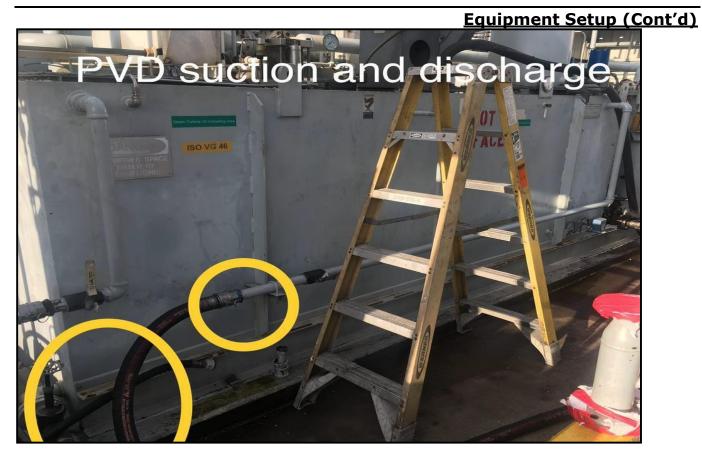
- 255 Man Hours worked with ZERO incidents or injuries
 - SFM Reliability Solutions (SFM RS) commitment safety, demonstrated by its safety record, provides plant owners, construction companies, and OEM's peace of mind and safety assurance
- Mutually developed a comprehensive flush plan with all related parties and executed the Flush meeting or exceeding customer requirements
 - Comprehensive and properly developed flush plan provided peace of mind and assurance that all flush requirements were satisfied, including properly draining and purging all system piping
 - SFM RS executed the flush utilizing purpose-built equipment and superior technical expertise. This helped the customer avoid schedule extensions during the outage.
- Provided documentation of flush procedures confirming SFM RS guarantee that all customer criteria were met.

Filtration

In addition to one-micron nominal "full flow" filtration used on the inlet side of the flush, mobile heater/ filter units were used to constantly control oil heat and cleanliness to OEM oil cleanliness.

Project Time-Line Overview:

Date	Man	Activity			
	Hours				
11/25	11.5	Completed site safety requirements. Staged equipment and finalized			
		jumper installation. Completed pre-flush walk down.			
11/26	38	Staged generator; electrical hook-up, staged tanker, started heating			
		oil on reservoir only; circulate on reservoir over night			
11/27	39	Staged PVDOPS, started PVDOPS on reservoir-pulled 4 gallons of			
-		water; started filling system with Heater Unit @ 17:00 and HVOF			
		@18:00; pulled			
		screens @ 19:00; started coarse flush @ 20:00; monitored system all			
		night and swapped filters/coolers every 2 hours			
11/28	37.5	Continued coarse flushing. Dumped approx. 10 gallons of water from			
-		PVDOPS; swap coolers and filters every 2 hrs.			
11/29	36	Continued course flush; thermal cycle system for 3 hrs; oil sample @			
		18:00 – ISO 18/15/12; all water has been removed from system, will			
		leave the PVDOPS on-line until morning			
11/30	34	Continued flushing; installed inspection screens 0740-0940 (pass all			
		screens); 2 nd set of screens installed and ran 0950-1050 (Passed all			
		screens) Final oil count was 14/12/7; removed oil from system and			
		stored in tanker, completed @ 1400; started circulating on tanker			
		with Heater Unit			
12/1	33	Circulating on tanker with PVD-pulled 2 gallons of water; obtained			
		CSE permit for reservoir clean out			
12/2	21	Circulating on tanker with PVDOPS-pulled 5 gallons of water with			
		PVDOPS			
12/3	5	Loaded up all equipment not needed; took oil samples to ship to lab			
		for testing			
12/4	-	Stand-by waiting on sample results			
12/5	-	Stand-by waiting on sample results			
12/6	_	Stand-by waiting on sample results			
Total	Total Hours				
Days - 12	- 255				


The following pages detail and photo-document the project, including completion of objectives.

The engine piping and components were flushed to the required specification, cleanliness and acceptance criteria were verified, witnessed and documented. The "Final Flush Acceptance" documents for the system, detailed flushing logs, and photo documentation are included in this report. These documents indicate time duration during various phases of the project, along with the on-site cleanliness level, photo documentation of various aspects of the flush.

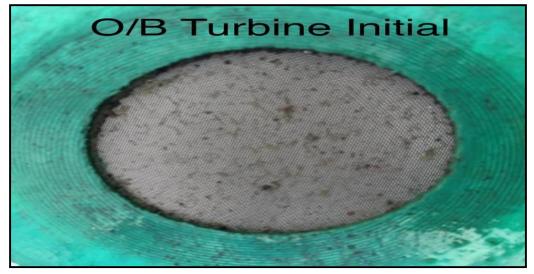
Equipment Setup

High Velocity Oil Flush Service ABB STAL VAX Steam Turbine

Cogen in Gulf Coast Area High Velocity Oil Flush Service ABB STAL VAX Steam Turbine

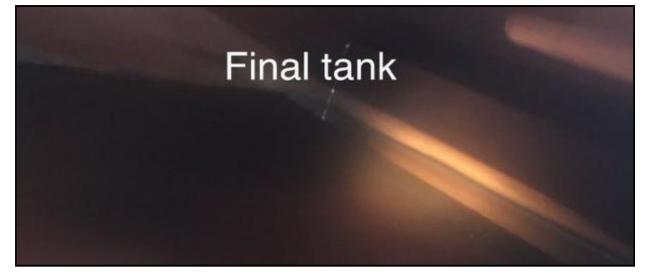
Cogen in Gulf Coast Area High Velocity Oil Flush Service ABB STAL VAX Steam Turbine

Vacuum Dehydrator Water Removal -VDOPS



Final pipe hand dean O/B generator drain

Inspection Screen photos



•

Particle Count Photos

	PODS OIL SAMPLE REPORT Sample: SABINE POW.7 Remarks: STG S COOLER
PODS DIL SAMPLE REPORTSample: SABINE POW.1 Remarks: STG INITIALTime: 08:TI:50 Volume: 10 mL/RUN Viscosity: 163.5 cstSerial #: 150443201 Sample Mode: B0TTLE Lowrate: 38 mL/min Dil Temp: 57.2 FReported Concentration: Parts/1 mL ISO Code: 25/24/23 (Jum/Gum/14um)(um(c))	Serial #: 150443201 Time: 07:34:28 Sample Mode: BOTTLE Volume: 10 ml/RUN Flowrate: 50 ml/min Viscosity: 81.4 cSt 0il Temp: 72.6 F Reported Concentration: Parts/1 ml ISO Code: 21/19/16 (4μm/6μm/14μm)(μm(c)) SIZES RUN1 RUN2 RUN3 4.0μm 10416.20 10914.30 10782.00 10704.17 4.6μm 7676.90 7661.20 7044.60 7460.90 6.0μm 4048.20 3759.30 3047.70 3618.40 9.8μm 1142.80 871.80 769.60 928.07 14.0μm 634.40 541.70 501.90 559.33
SIZES RUN1 RUN2 RUN3 AVG 4.0µm 161707.90161948.20161645.50 161767.20 4.6µm 159720.60159988.40159670.00 159793.00 6.0µm 146180.90146431.10146059.80 146223.93 9.8µm 100797.90100879.20100531.00 100736.03 9.8µm 100797.90100879.20100531.00 100736.03 14.0µm 68612.90 68438.30 68372.20 68474.47 21.2µm 34220.00 33993.70 33840.60 34018.10 238.0µm 3488.00 3448.50 3373.10 3436.53 98.0µm 25.20 30.40 20.60 25.40	21. 2µm 258. 00 261. 50 240.90 253. 47 38. 0µm 39. 60 44. 40 38. 80 40. 93 68. 0µm 2. 40 5. 10 2. 40 3. 30 *** *** *** *** *** ****

Final Pa	article Coun		Particle Count Photos (Cont'd)		
Sample: Remarks: Time: Volume: Viscosit Reported	SABINE POW.	17 Seri Samp Flow Oil		DTTLE L/min F	
SIZES 4. Ομm 4. 6μm 6. Ομm 9. 8μm 14. Ομm 21. 2μm 38. Ομm 68. Ομm * * * *	RUN1 143.60 92.10 39.00 2.40 1.10 0.30 0.00 * * * * * *	RUN2 134.70 84.30 31.20 2.20 1.40 0.00 0.00 0.00 * * * * *	RUN3 127.10 76.40 22.50 2.40 0.50 0.30 0.00 0.00 * * * * *	AVG 135.13 84.27 30.90 2.33 1.00 0.20 0.00 0.00 * * * * *	